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An Observed Regime Shift in the 
Formation of Warm Core Rings from 
the Gulf Stream
Avijit Gangopadhyay   1, Glen Gawarkiewicz2, E. Nishchitha S. Silva1, M. Monim   3 & 
Jenifer Clark4

We present observational evidence that a significant regime change occurred around the year 2000 
in the formation of Warm Core Rings (WCRs) from the Gulf Stream (GS) between 75° and 55°W. The 
dataset for this study is a set of synoptic oceanographic charts available over the thirty-eight-year 
period of 1980–2017. The upward regime change shows an increase to 33 WCRs per year during 2000–
2017 from an average of 18 WCRs during 1980 to 1999. A seasonal analysis confirms May-June-July as 
the peak time for WCR births in agreement with earlier studies. The westernmost region (75°-70°W) is 
least ring-productive, while the region from 65°W to 60°W is most productive. This regime shift around 
2000 is detected in WCR formation for all of the four 5-degree wide sub-regions and the whole region 
(75°-55°W). This might be related to a reduction of the deformation radius for ring formation, allowing 
unstable meanders to shed more frequent rings in recent years. A number of possible factors resulting 
in such a regime shift related to the possible changes in reduced gravity, instability, transport of the 
GS, large-scale changes in the wind system and atmospheric fluxes are outlined, which suggest new 
research directions. The increase in WCRs has likely had an impact on the marine ecosystem since 2000, 
a topic worthy for future studies.

Continental shelf waters along the mid-Atlantic and northeastern US have been rapidly changing over the last ten 
years. Recent observational studies indicate that extreme warming conditions are occurring more frequently in 
the water masses from the Middle Atlantic Bight (MAB) to the Gulf of Maine/Georges Bank (GOM/GB), along 
and across the Shelf break Front (SBF), in the slope waters and on the Labrador Shelf all the way into the Arctic1–5. 
Changes have been documented in circulation and water masses, ecosystem response, fisheries abundance, fish 
recruitment and seasonal migration6,7.

Pershing et al.5 stated that during the last decade, sea surface temperature in the GOM increased at a rate faster 
than 99% of the global oceans. They attributed such changes to factors such as the northward excursion of the GS 
and changes in the Atlantic Multi-decadal Oscillation and Pacific Decadal Oscillation. These authors also main-
tained that such changes might have caused the collapse of the cod fishery in New England waters2,8,9.

While observational evidence for change is growing, there are competing theories on how these changes are 
brought about. During 2012, winter and spring shelf water temperatures were the warmest on record2,10. This 
was attributed to decreased heat loss by the ocean during winter due to a northward shift of the atmospheric Jet 
Stream, and consequent warming of shelf waters11.

One of the major drivers of the changes in the shelf and slope waters off the US northeast coast is thought to 
be the latitudinal excursions of the GS bringing warm waters into the slope sea in the form of multiple Warm 
Core Rings (WCR) and streamers/shingles from the GS. Determining the impact of the WCRs on the shelf-slope 
exchange and thus on the water masses on the shelf12–15 is one of the priority areas of the Ocean Observatories 
Initiative science plan for the Pioneer Array15 and is presently a major area of active research11,16,17. Their fre-
quent occurrence and impact on the physical, chemical and biological oceanography of the Slope Sea region have 
been documented in the past through field observations18–20, satellite imagery21–24 and theoretical models25–28. 
However, a systematic study of WCR formation and distribution is necessary to understand the impact of the 
rings on the underlying ecosystem and its habitats.
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Previous climatological studies were limited by the number of years of data availability. For example, a number 
of studies23,24,29 used different 5-year charts to characterize WCR formation and propagation statistics. A consist-
ent 38-year-long (1980–2017) dataset documenting the occurrence and pathways of the WCRs in the GS region 
(75°W-55°W) on a semi-weekly basis has been compiled for this study30,31. First results from a comprehensive 
analysis based on a rigorous census developed from this 38-year-long database are presented here. One of the 
primary objectives is to determine the spatial variation of the seasonal and inter-annual variability of WCR for-
mation along the GS path from 75°W to 55°W. In doing so, we uncovered a distinct regime-shift in the number 
of WCRs formed after 2000. This paper focuses on this observed regime-shift and discusses a number of probable 
dynamical factors behind the regime-shift that may suggest new directions of research.

Results
Our main data is a set of charts prepared by one of the co-authors (Jenifer Clark) from 1980 through 2017. An 
example Chart with annotations of features (GS, WCR, CCR, shelf slope front, other eddies and features) is 
shown in Fig. 1a. NOAA and the Bedford Institute of Oceanography (BIO) used these charts from 1980 to 2004 
for extracting the GS and its eddy locations, sizes and migration. We reprocessed all the charts from 1980 to 
2017 using GIS to establish a comprehensive, consistent and accurate database (see Methodology for details). A 
robust census for WCR births was developed for the full region (75°W-55°W) and for four sub-regions (Region 
1: 75°W-70°W; Region 2: 70°W-65°W; Region 3: 65°W-60°W and Region 4: 60°W-55°W) (See Fig. 1a). During 
the 38-year study period, out of a total of 961 WCRs formed, Region 1 had only about 12% (114) of the total and 
Region 2 gave birth to about 20% (195) of the Rings (Fig. 1b). The more productive regions to the east had 37% 
(353) and 31% (299) for Regions 3 and 4 respectively. The New England Seamount Chain (NESC) underlies the 
Gulf Stream in the northeastern part of region 2 and in the southwestern part of region 3, possibly accentuating 
large-scale GS meandering enhancing the WCR formations in regions 3 and 432.

Figure 1.  (a) An example of a GS Chart from the analysis of Jenifer Clark. The four sub-regions of 5-degree bins 
are shown as separated by thick black lines. (b) Region-wide distribution of WCR formation during 38 years of 
study (1980–2017). Region 1: 75°-70°W; Region 2: 70°-65°W; Region 3: 65°-60°W; Region 4: 60°-55°W.
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Seasonal-to-inter-annual variability.  On a seasonal scale, WCR formation peaks in late spring/early 
summer (May-June-July) while the wintertime (January-February) has fewer rings forming (Fig. 2). The sum-
mertime peak is also present in each of the four different sub-regions. Previous statistical studies on WCRs have 
also indicated that the ring production by the GS system peaks during the summer months23,24.

The WCR formation process has been linked with GS instability processes, which convert the available poten-
tial energy to the eddy kinetic energy (EKE)33–35. Zhai et al.36 analyzed satellite altimeter data and found that in 
the GS region (73°W-44°W), EKE peaks in summer while the ocean is most baroclinically unstable during the 
winter. A recent numerical modeling study37 found that in the GS region (75°W-55°W) EKE has a dominant peak 
in May and a secondary peak in September near the surface. A similar correlation between surface EKE and the 
baroclinic instability was observed in the North Pacific38 and the southern Indian Ocean39. In these cases, a the-
oretical model was used to show that the lag of a couple of months corresponds to the length of time for unstable 
waves to grow in the respective regions.

The observed annual birth of the WCRs for the whole time-period (1980–2017) is presented in Fig. 3. From 
a sample size of 961 WCRs, there is significant inter-annual variability in the number of WCRs formed in indi-
vidual years, with a maximum occurrence of 42 in 2003 (followed by 41 in 2005 and in 2017), and a minimum 
occurrence of 11 WCRs in 1992. The number of WCRs in the slope sea between 75° and 55°W has significantly 
increased over the 38-year period (1980–2017). The inter-annual variability consists of short periods of increasing 
and decreasing rates of ring formation; the maximum rate was seen between 1993 and 2005, when about 2 addi-
tional rings were born every year, followed by a decreasing rate between 2005 and 2012. A more recent increasing 
rate (2012–2015) has been discussed briefly by Gawarkiewicz et al.40 in relation to recent warming of the Gulf of 
Maine and Northeast Shelf ecosystem.

Regime shift around the year 2000.  Given the pattern of ring formation appearing in Fig. 3, the pos-
sibility of an abrupt change in the pattern opposed to a gradual increase is worth examining. Regime shifts are 
a common feature of many geophysical systems41–44 and it is unclear a priori whether abrupt or gradual change 

Figure 2.  Seasonal Cycle of WCR formation over the whole region between 75°W and 55°W. The vertical bars 
denote the standard error of mean for each month.

Figure 3.  Interannual Variability of the WCR formation between 1980 and 2017. The regime shift (denoted by 
the split in the red solid line) is significant at the turn of the century.
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should be expected in ring formation for the Gulf Stream system. In this study, a sequential-t test-based regime 
shift detection algorithm45–47 was used to identify the regimes evident in the WCR birth time-series shown in 
Figs 3 and 4. The method of detecting regime shift is described in the Methodology section.

It is evident that the WCR formation process has gone through a regime shift around 2000. Note that the 
period 1980–1999 produced a total of 360 rings (annual average of 18), while the period (2000–2017) produced 
a total of 601 rings (annual average of 33). Figure 4 presents the regime-shift analysis results for each of the four 
sub-regions. The summary statistics of the regime-shift analysis are presented in Table 1. All four sub-regions 
show significant regime change between 1998–2000. These results were also supported by the Change-point anal-
ysis in R48, the Change-point detection in Matlab49,50 and by an independent Markov Regime Switch model51, in 
that these methods also detected the regime-shift for the whole area in year 2000 and for the sub-regions between 
1998–2000 (see Methodology for details on these different models).

The time-series in Fig. 3 also shows an overall increasing trend that could fit a linear model. Significant 
p-values were obtained for both linear and regime-shift models. However, the residual variance (the variance of 
the residual between the observations and the model fit)52 was larger (36.91) for the linear model compared than 
for the regime-shift model (21.47). Furthermore, the regime-shift model explains 75% of the variance compared 
to only 56% by the linear trend. Thus we conclude that the regime-shift model renders an appropriate and robust 
explanation of the behavior of the WCR formation during this 38-year period.

Discussion
Three different factors are important to consider for investigating possible reasons behind such a regime shift of 
the WCR formation: (i) decreasing reduced gravity, (ii) internal GS dynamics and (iii) atmospheric forcing.

Figure 4.  Interannual Variability of WCR formation in different sub-regions–Region 1: 75°-70°W; Region 2: 
70°-65°W; Region 3: 65°-60°W; Region 4: 60°-55°W. Significant regime changes were detected between 1998 and 
2000 for each region. See Table 1 for exact shift years.

Regime 
Character

Region 1 
(75–70 W)

Region 2 
(70–65 W)

Region 3 
(65–60 W)

Region 4 
(60–55 W)

Total WCR 
(75–55 W)

Regime #1

Period 1980–1999 1980–2000 1980–1998 1980–1999 1980–1999

Mean 1.00 3.33 7.05 6.30 18.00

L 20 21 19 20 20

Regime Shift

Shift Upward Upward Upward Upward Upward

RSI 8.47 9.24 10.84 7.34 15.25

p-value 2.81E-05 2.17E-06 3.95E-06 1.13E-04 5.79E-11

Regime #2

Period 2000–2017 2001–2017 1999–2017 2000–2017 2000–2017

Mean 5.22 7.35 11.53 9.61 33.39

L 18 17 19 18 18

Table 1.  Summary of statistics for the Regime Shift analysis for all regions.
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A typical ring formation event after the GS leaves the coast at Cape Hatteras happens when the radius of defor-
mation is comparable to the meandering length scale53–55. Dynamically, this occurs when the centrifugal force is 
balanced by the Coriolis force for the fluid parcels following the crest of a meander, which then becomes a closed 
vortex, or WCR. The internal radius of deformation (Rd) is generally given by g H

f








′ , where g′ is the reduced 

gravity, H is the water depth, and f is the Coriolis parameter.
Therefore, a reduction of g′ might lead to a smaller Rd and increased WCR formation. The observed warming 

in the slope waters4,40,56 in the past decade might have reduced the density difference between the slope water and 
the GS. So, the recent warming in the slope water might have contributed to the increasing number of WCRs in 
the later regime after 2000. Additionally, while atmospheric forcing might have led to the initial warming of the 
slope sea10 the latter mechanism of decreasing reduced gravity has a positive feedback by producing more WCRs 
giving rise to even warmer and saltier slope water.

It is also reasonable to postulate that the WCR formation is driven by the instabilities (both barotropic and 
baroclinic)53,57 generated in the GS through its interaction with the slope and Sargasso waters, with the Deep 
Western Boundary Current (DWBC) and with the NESC. However, the instabilities take time to grow and thus 
a lag between the transport of the GS at Hatteras and the WCR formation in the regions downstream might be 
expected as discussed in Section 2.1. In this context, the multi-year (1992–2016 and beyond) transport data 
for the GS, Sargasso and Slope waters available from the Oleander group58–60 would be very useful. A thorough 
instability-based analysis relating the OMV Oleander transport (of the GS, Sargasso and Slope waters), westward 
movement of the destabilization point of the GS57, the DWBC strength and proximity to NESC with the number 
of WCRs will be forthcoming.

Further to the east, an altimetric data analysis61 showed that the GS path between 65°W and 55°W has pro-
gressively moved southward during 1993–2013. The overall increasing trend of the WCR formation over almost 
four decades also coincided with a recently reported southward shift east of 65°W and slowing of the GS trans-
port62,63 during 1993–2016. Evidently such a southward excursion of the GS system at its eastern end would allow 
for more WCR birth in the 65°-55°W region and might have resulted in increased ring formation during the last 
seventeen years. Note that both sub-regions (65°-60°W and 60°-55°W) are the major contributors to the total ring 
formation numbers due to the stream’s large-amplitude meandering behavior as it crosses the NESC32,64. Thus, a 
slight additional southward displacement might enhance ring formation in this region even further due to flow 
interactions with the Sea Mounts.

With regards to atmospheric forcing, the North Atlantic Oscillation (NAO) has been linked to the formation of 
the WCRs through the GS EKE in the past16,35,65. While the WCRs were inversely lag-correlated with the NAO winter 
Index during 1978–199916, such a relationship with the NAO was not found during 2000–2016. It is uncertain at 
this time how the interannual variability of the NAO-induced winds affect the GS EKE to provide for the baroclinic 
instability that would be necessary to produce a large number of WCRs during the past two recent decades.

One other obvious suspect for the causes of the regime shift is the wind-stress curl over the subtropical North 
Atlantic that generates the westward propagating Rossby waves to generate the western boundary current66–69. 
Recently, the decadal shifts of the Kuroshio Extension (KE) have been shown to be associated with a weak (strong) 
transport and unstable (stable) meandering configuration70. These opposing phases were linked to the basin-wide 
wind-stress curl forced negative (positive) Sea Surface Height (SSH) anomalies propagating west in the form of 
Rossby waves during negative (positive) phases of the North Pacific Gyre Oscillation. Furthermore, Yang et al.71 
recently showed that the strong and stable state of the KE is also associated with a strong southern recirculation 
gyre. Future studies are needed to investigate the possibility of a weakening southern recirculation gyre during 
the past two decades that could add to the increasingly unstable state of the GS. Such investigations should also 
reconcile with recent observations of westward movement of the destabilization point of the GS57.

Such a high number of WCRs in the slope water might have impacted the ecosystem of the GOM/GB and 
MAB by making them even warmer and saltier in the first two decades of the twenty-first century. This is clearly 
evident during recent specific Ring intrusion events, for example during January 2017 south of New England 
when Gulf Stream flounder were caught in Rhode Island Sound in addition to juvenile Black Sea Bass40. However, 
it is also likely that the increasing frequency of warm core ring encounters with the continental shelf will contrib-
ute to increased warming of the continental shelf. This in turn is likely to increase the rate at which the geograph-
ical centroid of marine species moves to the north72.

Conclusions
We present observational evidence that the number of WCRs formed from the GS has undergone a significant 
regime-shift at around the year 2000. The average number of WCR formations has increased to 33 per year during 
2000–2017 from an average of 18 per year during 1980–1999. We hypothesize that the increase of the number 
of WCRs in recent years could be related to increased instability due to several factors, such as (i) decreasing 
reduced gravity between the slope and the GS due to warming of the slope (via atmospheric forcing), (ii) internal 
dynamics of the GS system (including transport, latitudinal movement, and interactions with DWBC and NESC), 
and (iii) changes in the large-scale atmospheric forcing, or a combination of these factors. Further detailed simu-
lations and energetics analysis will be necessary to quantify these relationships and identify the dynamics behind 
the increased number of WCRs since 2000.

Methodology
Data.  The primary dataset is a set of charts prepared by one of the co-authors, Jenifer Clark (JC). An example 
is shown in Fig. 1a. This collection of charts of the GS and surrounding waters has been annotated with satellite 
data indicating temperature. Using infra-red (IR) imagery, satellite altimetry data, and surface in-situ temper-
ature data, oceanographic analyses were produced for this region in the form of 2–3 day composite charts in a 
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consistent manner. These charts show the location, extent and temperature signature of currents (GS, shelf-slope 
front), warm and cold-core rings (WCRs and CCRs), other eddies, shingles, intrusions and other water mass 
boundaries in the Gulf of Maine, over Georges Bank and in the Middle Atlantic Bight.

These charts have been used in the past by various researchers for different purposes. Some studies23,24,29 have 
used these over different 5-year periods in the 1980s to develop a WCR climatology and related statistics. These 
charts were used for the first synoptic prediction of cold-core-ring propagation and their acoustic signatures for 
the US Navy53. Such charts were also used for interannual variability studies16 and for IOOS-related operational 
forecasting73,74.

The basis data source was individual IR temperature images from the NOAA polar orbiting satellites (NOAA-5 
in the early 1980s to NOAA-18 recently) at 6–12 hourly intervals. These images were captured by the Advanced 
Very High Resolution Radiometer (AVHRR) and AVHRR2 instruments, both of which had a resolution of 1.1 km 
over the last four decades. Each individual image has a different lookup table (or colormap) for temperature that 
resolves 256 distinct sets of intensity, hue and saturation of color within the available and retrievable IR signal 
range. This allows for accurate identification of the small-scale features in each image. The analyst locates all of the 
small scale features in each individual satellite SST image within a three-day period. The locations and boundaries 
of the features (GS, WCR, CCR and other smaller scale entities) are remapped onto a 3-day composite image for 
that period. The 3-day composite image has a fixed and broad (5–30 °C) range of temperature with similar 256-set 
indexing, which by itself could not resolve the features. Note that individual images with high-resolution within 
a narrower band of temperature range also have clouds, which are eliminated (or at least minimized) during the 
process of generating the 3-day composites. The 3-day composite helps to visualize the whole GS and its rings in 
a broader region (like Fig. 1a); while the individual images help resolve the features at a very high resolution. The 
3-day composite images are regularly produced by NOAA and/or the Johns Hopkins University Applied Physics 
Lab (fermi) group (see http://fermi.jhuapl.edu for more details). Thus, the JC Charts, which uses this basis data 
source, is the most continuous and consistent data set to extract the WCRs, the GS and the CCRs over the whole 
period of analysis (1980–2017) at a constant resolution of 1.1 km30,31.

The process of creating the WCR census time-series can be summarized as follows. First, the JC Charts are 
available 2–3 times a week from 1980–2017. Thus, we used approximately 5000 Charts for the 38 years of analysis. 
All of these charts were reanalyzed between 75° and 55°W using QGIS 2.18.1675 and georeferenced on a WGS84 
coordinate system76. The analyst goes through each chart and follows a set of rules (birth, continuity, death) to 
identify each WCR30 and tabulates the ring parameters. A new ring formation is documented in the following 
situations: (i) a typical GS crest forming a closed anticyclonic vortex and detaches from the stream in the slope 
water; (ii) an anticyclonic eddy forms off of another large anticyclonic eddy in the slope water; (iii) an anticyclonic 
eddy further away from the stream coming into the domain through Region 430. Note that any anticyclonic eddy 
that existed for less than 7 days was not counted in the census.

Thirty-eight years of WCR census yielded a total of 961 WCRs and their birth, death, size and age informa-
tion were documented and are available on request. In addition, we also have access to a database from Roger 
Pettipas of  BIO who documented the ring center location, and size at birth on each analysis day, generally twice 
a week from the same set of JC Charts (also called the NOAA Charts) during the period 1980–2004. A validation 
was carried out30,31 using the BIO data, an earlier study16 and this new Census to eliminate the possibility of any 
analyst error. A similar and comprehensive Census development for the CCRs of the GS system using the GIS 
framework is underway.

Regime shift analysis.  A sequential regime shift detection algorithm45–47 was used to identify the regimes 
evident in the WCR birth time-series shown in Fig. 1 for the whole and all four sub-regions. The algorithm detects 
the regime shifts in the mean and the variance. Briefly, the method includes applying the student’s T-Test sequen-
tially to a time-series when data is arriving continuously. With the arrival of a new observation to its time-series, 
a check is performed to determine whether the deviation of the current mean, xcur, from the new mean, xnew 
(including the new observation), is statistically significant or not. A key factor is the choice of the cut-off length 
to start the sequencing that was varied between 5 and 21 years for this 38-year period of study. The regimes pre-
sented in Table 1 are found to be stable at 95% confidence interval in the range of variation of cut-off length 5–21. 
In the second step, when xnew is significantly different from xcur, a second criterion, based on a quantity called 
the ‘Regime Shift Index’ (RSI) is invoked. RSI represents the cumulative sum of normalized anomalies over the 
current period of analysis (see Rodionov45 for the exact equation and its explanation). A regime shift is detected 
when the new regime mean shows an upward (downward) shift and RSI is negative (positive) and tcur is declared 
as the change point by the algorithm46.

The Changepoint analysis in R48 tests for sequential changes in the mean by testing for the null hypothesis (H0) 
that corresponds to no changepoint using a likelihood based framework. The test statistic is constructed using 
the Maximum Log Likelihood value for the change point. If this Maximum Log Likelihood value is higher than a 
threshold value then the test rejects the hypothesis.

The Changepoint detection in Matlab49,50 involves choosing a point in a timeseries dividing the series into 
two sections. The total residual error for each section is calculated using the difference between series points and 
the empirical mean (and/or variance). The changepoint is decided when the total residual error is at a minimum.

The Markov Regime Shift Models51 allows for detecting multiple states in a time-series based on estimation 
of Maximum Log Likelihood77. Since the states are unknown, this method involves estimating the Maximum 
Log Likelihood as a weighted average of the state’s probability distributions. The probabilities of each state are 
determined by filtered probabilities78,79 that use available information of each state based on arrival of new infor-
mation. A 2-state model was used in this study to detect the regime-shift of the WCR formation.
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Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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